传感器输入基于海量数据处理和预编程行为,德州仪器TI深度卷积神经网络

来源:时间: 2024-10-27

传感器输入基于海量数据处理和预编程行为,德州仪器TI深度卷积神经网络

自动驾驶中的视觉处理在AI当前研究中占主导地位,但该技术在无人机和机器人中的作用也越来越大,Achronix公司总裁兼首席执行官Robert Blake说:“对于图像处理的AI应用,计算复杂度很高。对于无线技术,数学很好理解。对于图像处理,数学就像西部拓荒,工作负载复杂多变。大概花费5~10年时间才能解决市场问题,但是它对于可编程逻辑肯定会有很大的作用,因为我们需要能够以高度并行的方式完成的变精度数学。”FPGA非常适合矩阵乘法。最重要的是,它的可编程性增加了一些必要的灵活性和面向未来的设计,因为在这一点上,不清楚所谓的智能将存在于一个设计的哪部分。用于做决策的数据一些将在本地处理,一些将在数据中心中处理。但在每个实现中,其百分比可能会改变,这对AI芯片和软件设计有很大的影响。虽然AI的大局并没有太大的变化(大部分所谓的AI更接近于机器学习,而非真正的AI),但是对于如何构建这些系统的理解却发生了重大的变化,Arteris营销副总裁Kurt Shuler说:“对于自动驾驶汽车,人们正在做的就是把现有的东西放在一起。为了使一个真正高效的嵌入式系统能够学习,它需要一个高效的硬件系统。我们采用了几种不同的方法。如果你关注视觉处理,你要做的是试图弄清楚器件看到的是什么,以及你如何推断。这包括来自视觉传感器、激光雷达和雷达的数据,然后应用专门的算法。这里的很多事情都是试图模仿大脑中的事情,方法是利用深度卷积神经网络,它与真正的AI的不同之处是,现有技术水平能够检测和避开物体,而真正的AI能够拥有推理能力,例如如何通过一群人正在横穿的街道,或判断玩皮球的小孩子是否会跑到街道上。对于前者,判断是基于各种传感器的输入,而传感器的输入是基于海量数据处理和预编程的行为,对于后者,机器能够作出价值判断,例如判断转弯避开孩子可能会造成的很多结果,并做出最佳选择。


电话

185 0303 2423

微信

咨询

置顶