来源:时间: 2024-09-29
光刻利用电透镜将离子束聚焦成小尺寸显微切割仪器,德州仪器TI扫描式光刻浸没式扫描光刻极紫外光刻
光刻这个概念,有广义和狭义之分。在狭义层面,就是用光去「复印」集成电路图案,这也是我们常说的光学光刻技术,特别是紫外线光刻技术(DUV 和 EUV)。在广义层面,光刻泛指各种集成电路「复印」和「印刷」技术,这些技术中,有的用光,有的不用光(如电子束和纳米压印光刻)。按应用划分,半导体光刻技术主要用在三个领域:前道工序的集成电路制造,后道工序的芯片封装,以及显示面板的制造。其中,技术含量最高、受关注度最高的就是前道工序光刻工艺,我们常说的 DUV 和 EUV,就是这一部分应用。本文主要讨论这一领域的光刻技术。光刻技术总览首先,我们先从广义层面了解一下各种光刻技术。在半导体行业,光刻技术的发展经历了多个阶段,接触/接近式光刻、光学投影光刻、分步(重复)投影光刻出现时间较早。目前,集成电路制造主要采用光学光刻技术,包括扫描式光刻、浸没式扫描光刻、极紫外光刻工艺。此外,还有 X 射线、电子束光刻、聚焦粒子束光刻、纳米压印、激光直写技术。光学光刻,是通过照射,用投影方法将掩模上的大规模集成电路结构图形「画」在涂有光刻胶的硅片上,通过光的照射,光刻胶的成分发生化学反应,从而生成电路图,光学光刻需要掩模。德州仪器TI集成电路的最小特征尺寸与光刻系统的分辨率直接相关,而减小照射光源的波长是提高分辨率的有效途径。因此,开发新型短波长光源光刻机一直是业界的研究热点。电子束光刻,该技术不需要掩模,直接将会聚的电子束斑打在表面涂有光刻胶的衬底上。电子束光刻存在的一些问题阻碍了该技术的普及,例如:电子束高精度扫描成像曝光效率低;电子在抗蚀剂和基片中的散射和背散射现象造成的邻近效应;在实现纳米尺度的加工中,电子抗蚀剂和电子束曝光及显影、刻蚀等工艺技术问题。光刻是利用电透镜将离子束聚焦成小尺寸的显微切割仪器,它的工作原理与电子束光刻相近。目前,商用的离子束为液态金属离子源,金属材质为镓。典型的离子束显微镜包括液相金属离子源、电透镜、扫描电极、二次粒子侦测器、5-6 轴向移动的试片基座、真空系统、抗振动和磁场的装置、电子控制面板,以及计算机等设备。外加电场于液相金属离子源,可使液态镓形成细小尖端,再加上负电场,牵引尖端的镓,导出镓离子束,通过电透镜聚焦,经过一连串变化孔径 (Automatic Variable Aperture, AVA) 可调整离子束的大小,再经过二次聚焦至试片表面,利用物理碰撞来达到切割的目的。纳米压印光刻,采用电子束等技术将电路图案刻制在掩模版上,然后通过掩模使对象上的聚合物变形,再采用某种方式使聚合物固化,进而完成图案的转移。纳米压印分辨率高,成本低,但存在刻套误差大、缺陷率高、掩模版易被污染的缺点。 德州仪器TI主流光学光刻工艺如前文所述,狭义层面的光刻,也就是目前的主流光刻技术,其基本原理是:利用光通过具有图形的光罩(掩模版)对涂有光刻胶的晶圆曝光,光刻胶见光后会发生性质变化,使光罩上的电路图复印到晶圆上,形成电子线路图。光刻系统非常复杂,整个设备由光源、投影物镜、工件台、掩模台、对准与测量、掩模传输、晶圆传输等部分组成。此外,还需要环境与电气系统、光刻计算(OPC)与掩模优化(SMO)软件、显影、涂胶设备提供支持。